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Abstract

We propose a theory to explain random behavior for the digits in the expansions of
fundamental mathematical constants. At the core of our approach is a general hypothesis
concerning the distribution of the iterates generated by dynamical maps. On this main
hypothesis, one obtains proofs of base-2 normality|namely bit randomness in a speci�c
technical sense|for a collection of celebrated constants, including �; log 2; �(3), and
others. Also on the hypothesis, the number �(5) is either rational or normal to base
2. We indicate a research connection between our dynamical model and the theory of
pseudorandom number generators.
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1. Introduction

It is of course a long-standing open question whether the digits of � and various
other fundamental constants are \random" in an appropriate statistical sense. Informally
speaking, we say that a number � is normal to base b if every sequence of k consecutive
digits in the base-b expansion of � appears with limiting probability b�k. In other words,
if a constant is normal to base 10, then its decimal expansion would exhibit a \7" one-
tenth of the time, the string \37" one one-hundredth of the time, and so on. It is widely
believed that most, if not all, of the \fundamental" or might we say \natural" irrationals
are not only normal to base 10, but are absolutely normal, meaning they are normal
to every integer base b � 2. By \fundamental" or \natural" constants here we include
�; e; log 2;

p
2, the golden mean � = (1 +

p
5)=2, the Riemann zeta function evaluation

�(3), and a host of others. In regard to algebraic numbers, one could further conjecture
that every irrational algebraic number is absolutely normal, since there are no known
counter-examples. Even suspected (but not yet proven) irrationals, such as the Euler
constant , are generally expected to be absolutely normal.

It is well-known from measure theory that a \random" real number is absolutely
normal with probability one. In spite of this result, not a single fundamental constant
has been shown to be normal to base b for any b, much less for all bases simultaneously.
Even the weaker assertion that every �nite digit string appears in the expansion has not
been established, to our knowledge, for any fundamental constant. We shall mention later
some arti�cially-constructed, provably normal numbers; yet the situation with respect to
fundamental constants has remained bleak to the present day.

We discuss here a linkage between the normality of certain constants and a certain kind
of dynamical mechanism. In a companion paper, we establish a relationship between the
dynamical picture and the theory of pseudorandom number generators [3]. Our present
theory is based on the following general hypothesis:

Hypothesis A. Denote by rn = p(n)=q(n) a rational-polynomial function, i.e. p; q 2
Z[X]. Assume further that 0 � deg p < deg q, with rn nonsingular for positive integers
n. Choose an integer b � 2 and initialize x0 = 0. Then the sequence x = (x0; x1; x2; : : :)
determined by the iteration:

xn = (bxn�1 + rn) mod 1: (1)

either has a �nite attractor or is equidistributed in [0; 1). 2
We shall precisely de�ne \equidistributed" and \�nite attractor" shortly, intending for

the moment just to convey the spirit of this core hypothesis. The condition 0 � deg p is
simply a convenience, to rule out the zero polynomial (on the mnemonic: deg 0 = �1).
Now, there is a striking consequence of Hypothesis A, namely that digits of the expansions
of certain constants must be random in the following sense:
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Theorem 1.1. On Hypothesis A, each of the constants

�; log 2; �(3)

is normal to base 2, and log 2 is also normal to base 3. Furthermore, on Hypothesis A, if
�(5) be irrational then it likewise is normal to base 2. 2

The particular set of constants appearing in Theorem 1.1 is merely representative, for
as we shall see, numerous other constants could also be listed.

We should emphasize here that if even one particular instance of Hypothesis A could be
established, the consequences would be remarkable. For example, if it could be established
that the simple iteration given by x0 = 0 and

xn = (2xn�1 +
1

n
) mod 1 (2)

is equidistributed in [0; 1), then it would follow that log 2 is normal to base 2. In a similar
vein, if it could be established that the iteration given by x0 = 0 and

xn =

 
16xn�1 +

120n2 � 89n + 16

512n4 � 1024n3 + 712n2 � 206n + 21

!
mod 1 (3)

is equidistributed in [0; 1), then it would follow that � is normal to base 16 (and, as we
shall see, it would follow trivially that � is also normal to base 2).

The algorithmic motivation for our current treatment is the recent discovery of a simple
algorithm by which one can rapidly calculate individual digits of certain polylogarithmic
constants [2]. This \BBP" algorithm (named from the authors of [2]) has already given
rise to a small computational industry of sorts. For example, the quadrillionth binary
digit of �, the billionth binary digit of log 2 and the hundred-millionth binary digit of
�(3) have been found in this fashion [2, 5, 7, 19]. Our intent here is not to present new
computational results, but instead to pursue the theoretical implications of this algorithm.

Let us describe the BBP algorithm by way of example. We start with the well-known
formula:

log 2 =
1X
k=1

1

k2k
: (4)

Now for any n � 1 the fractional part (2n log 2) mod 1 gives precisely that part of the
expansion of log 2 starting at location n + 1 inclusive in the binary expansion of log 2.
(Location 1 is the �rst binary digit to the right of the \decimal" point.) We have:

(2n log 2) mod 1 =

 1X
k=1

2n�k

k

!
mod 1

=

0
@ nX
k=1

 
2n�k mod k

k

!
mod 1 +

1X
k=n+1

2n�k

k

1
A mod 1 (5)

We have parsed this last expression explicitly to indicate the algorithm in question: (1)
�rst compute each numerator of the �rst sum (having k 2 [1; n]) using the well-known
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binary-ladder algorithm for exponentiation, reducing each intermediate product modulo
k; (2) divide each numerator by its respective k using ordinary oating-point arithmetic;
(3) sum the terms of the �rst series, discarding any integer parts; (4) compute the second
sum (just a few terms are needed), and (5) add the two sum results, again discarding the
integer part. The resulting fraction, when expressed in binary notation, gives the �rst few
binary digits of log 2 beginning at position n + 1. High-precision arithmetic software is
not required for these operations|ordinary 64-bit or 128-bit oating-point arithmetic will
suÆce|and very little memory is required. A few hexadecimal digits of log 2 beginning
at the ten billionth position, which were computed using this formula, are given in [2].

In a similar manner, one can compute arbitrary hexadecimal (or binary) digits of �
by means of the formula

� =
1X
n=0

1

16n

�
4

8n + 1
� 2

8n + 4
� 1

8n+ 5
� 1

8n+ 6

�
:

This can be done by simply writing this expression as a sum of four in�nite series and
then applying the scheme described above for log 2 to each of these four series [2].

Our theoretical approach here is to analyze this process of \digit extraction" to study
the randomness of the digits produced. As we shall see, this inquiry leads into several
disparate �elds of inquiry, including algebraic number theory, chaotic dynamics, ergodic
theory, pseudorandom number generation, probability and statistics. Some of these con-
nections are explored in the companion paper [3] and in a manuscript by Lagarias [16]).

2. Nomenclature and fundamentals

We denote by b�c and f�g respectively the usual oor and fractional-part extractions
of a real �. In general we have � = b�c+f�g, noting that the fractional part is always in
[0; 1). We can also say f�g = � mod 1, which is convenient given our opening remarks.
We de�ne the norm jj�jj for � 2 [0; 1) as jj�jj = min(�; 1 � �). With this de�nition,
jj���jj measures the shortest distance between � and � on the unit circumference circle
in the natural way. A simple but useful rule that we will use in some of the ensuing
analysis is what we call the dilated-norm rule: if 0 � Æ � 1=(2jjzjj) then, because jjÆzjj is
now bounded above by 1=2, we have jjÆzjj = Æjjzjj.

A base-b expansion, say

� = 0:�1�2�3 : : :

where each �j is an integer in [0; b � 1], is taken to be unique for �. When competing
expansions exist, as in decimal 0:1000 : : : = 0:0999 : : :, we take the variant with trailing
zeros. Now consider the frequency (when it exists) with which a given �nite digit string
(d1d2 : : : dk) appears in �. This is taken to be the limit as N ! 1 of the number of
instances where �j = d1; �j+1 = d2; : : : ; �j+k�1 = dk; j � N + 1� k, divided by N . We
now introduce a standard de�nition from the literature [15, pg. 69, 71].

De�nition 2.1. A real number � is said to be normal to base b if every �nite string of
k digits appears in the base-b expansion of � with well-de�ned limiting frequency b�k. A
number that is normal to every integer base b � 2 is said to be absolutely normal. 2
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We remarked earlier that almost all numbers are absolutely normal. This is intuitively
evident, since a base-b expansion of � 2 [0; 1) corresponds to an in�nite game of ipping
a fair, b-sided die, and thus we expect every k-long string of symbols to appear with
the expected frequency b�k, for almost all � (i.e., with probability one). For our present
purposes, it will be useful to also adopt a second, somewhat weaker criterion of digit
randomness, namely:

De�nition 2.2. We say a number � is digit-dense to base b if every �nite string of k
consecutive base-b digits appears in the base-b expansion of �. 2

Note that this de�nition implies that if � be digit-dense to base b, then every �nite
string appears not just once but in�nitely often. This follows immediately upon the
simple observation that every �nite string is contained in an in�nite number of longer
�nite strings.

Analogous to the notion of a digit-dense expansion is the notion of a dense sequence
in [0; 1). A dense sequence visits every nonempty subinterval [c; d) at least once (and
hence in�nitely often). A stronger notion is equidistribution, to which we now turn. For
a sequence x = (x0; x1; : : :) of real numbers in [0; 1), consider the counting function:

C(x; c; d;N) = #(xj 2 [c; d) : j < N)

This C function gives the count of the �rst N elements of the sequence x that lie in the
interval [c; d). Then the property of equidistribution is that elements of x lie in subregions
of [0; 1) with a fair frequency, in the following exact sense:

De�nition 2.3. A sequence x in [0; 1) is said to be equidistributed if for any 0 � c < d < 1
we have

lim
N!1

C(x; c; d;N)

N
= d� c: 2

This de�nition is identical to that of \uniform distribution modulo 1", as given in [15, pg.
1].

In our development we shall need one (out of several) existing theorems on equidistri-
bution, namely the following [15, pg. 3], where we have added the simple extension that
covers the weaker condition of density along with equidistribution:

Theorem 2.1. Let (xn) be equidistributed (alt.: dense). If a sequence (yn) has the
property that fyng ! C (constant C) as n!1, then the sequence (fxn+yng) is likewise
equidistributed (alt.: dense). In particular, if yn ! 0, then (fxn+ yng) is equidistributed
(alt.: dense). 2

Next, here is a simple but beautiful connection between normality of a number and
equidistribution of relevant fractional parts [15, pg. 70].

Theorem 2.2. A number � is normal to base b if and only if the sequence (fbn�g : n =
1; 2; 3; : : :) is equidistributed. 2

Corollaries of these last two theorems can be useful, even amusing. A typically curious
side result is this: log 2 is normal to base 2 if and only if the sequence (flogFng) is
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equidistributed, where Fn = 22
n

+ 1 are the celebrated Fermat numbers. This follows
immediately by observing that limn(logFn � 2n log 2) = 0.

It is straightforward to prove the following result, which will enjoy application to
certain speci�c real numbers:

Theorem 2.3. A number � is digit-dense to base b if and only if the sequence (fbn�g :
n = 1; 2; 3; : : :) is dense in [0; 1).

Proof: Any interval (r; s) in [0; 1) contains a base-b subinterval I of the form [0:d0d1:::dk�1;
d0d1:::(dk�1 + 1)) , where the dj represent base-b digits and dk�1 < b� 1. If one assumes
that � is digit-dense, then fbn�g visits the interval I at least once, and thus visits (r; s)
at least once. Conversely, if one assumes that the sequence (fbn�g) is dense in [0; 1), then
any base-b string appears at least once, so that � is digit-dense to base b. 2

The theory of normal numbers is deep, and has a long history; we mention here just
one one the deeper results relevant to our present treatment [15, pg. 72]:

Theorem 2.4. Assume � is normal to base b, and denote by r a nonzero rational number.
Then r� is normal to base b; moreover � is also normal to any (integer) base c = br. 2

The �rst part of this theorem tells us that if we establish the normality of say r
s
�(5)

for integers r; s, then �(5) is automatically normal. The second part tells us, for example,
that if a number be normal to base 16 (i.e., every hexadecimal string appears with proper
frequency), then the number is also normal to base 2, or for that matter to any power-of-
two base. The wording of this latter part is critical: there exist numbers normal to some
base b but not to some other base a that is not a rational power of b [9, 15]. For example,
the standard Cantor set has members that are normal to base 2, yet none of its members
is normal to base 3. Moreover, there are results on the class of \absolutely abnormal"
numbers, meaning numbers not normal to any base. Any rational number is of this class,
of course, yet the class is uncountable, and there exist proven, constructive examples of
absolutely abnormal irrationals [17].

It is a celebrated theorem of Weyl that � is irrational if and only if the sequence (fn�g :
n = 1; 2; 3; : : :) is equidistributed [15, pg. 8]. Note however that in the present treatment
we are not concentrating on multipliers n; rather we need the much sparser multiplier set
of powers bn in order to analyze base-b digits per se. For reader convenience we summarize
thus: the sequence (fbn�g) is dense (alt.: equidistributed) as � is respectively digit-dense
to base b (alt.: normal to base b).

We have mentioned the abject paucity of normality proofs for fundamental constants.
The interesting but arti�cial Champernowne constant, namely the number:

C10 = 0:123456789101112131415 : : : ;

where the positive integers are trivially concatenated, is known to be normal to base 10,
although existing proofs of even this are nontrivial [10, 18]. One can, of course, construct
a binary or ternary equivalent of this constant, by concatenating digits in such bases.
In a separate treatise we touch upon the theory of continued fractions, noting for the
moment that the Champernowne constant is known to have some gargantuan elements in
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its simple continued fraction [20]. Another example of an intentional construction is the
Copeland-Erd}os number:

0:23571113171923 : : : ;

in which the primes are simply concatenated; this number being likewise normal to base
10 [11]; this concatenation game can be generalized yet further to more general integer
sequences for the digit construction.

Theorem 2.5. If � be normal to base b then � is digit-dense to base b. If � be digit-dense
to some base b then � is irrational.

Proof: Normality clearly implies the digit-dense property by De�nition 2.1. If one as-
sumes that � is digit-dense to some base b, then � cannot be rational, since it is well-known
that the base-b expansion of any rational number repeats with a �nite period after some
initial digit string. This peridocity rules out the existence of arbitrary strings. 2

Now we turn to some preliminary dynamical notions for the iterates involved in Hy-
pothesis A. First o� we owe the reader a de�nition of \�nite attractor," and a related
notion which we call \periodic attractor":

De�nition 2.5. A sequence x = (xn) in [0; 1) is said to have a �nite attractor W =
(w0; w1; : : : ; wP�1) if for any � > 0 there is some K = K(�) such that for all k � 0, we
have jjxK+k � wt(k)jj < �, for some function t(k), with 0 � t(k) < P . 2

De�nition 2.6. A sequence x = (xn) in [0; 1) is said to have a periodic attractor
W = (w0; w1; : : : ; wP�1), if for any � > 0 there is some K = K(�) such that for any k � 0,
we have jjxK+k �wk mod P jj < �. 2

Two useful results along these lines are the following:

Theorem 2.6. Assume a sequence (yn) has the property that yn ! C (with C constant)
as n !1. Then a sequence (xn) in [0; 1) has a �nite attractor (alt: periodic attractor)
if and only if (fxn + yng) does.
Proof: This follows immediately from the �-restriction in De�nitions 2.5 and 2.6. 2

Theorem 2.7. The sequence (xn) as de�ned for Hypothesis A has in�nitely many distinct
elements, and thus this set of distinct elements has at least one limit point.

Proof: Consider the set D of all possible di�erences jjxn � bxn�1jj. If there are �nitely
many distinct elements in the full sequence (xn), then D is a �nite set so must have a
least element. But the perturbation term rn is arbitrarily close (but not equal) to zero
for suÆciently large n, which is a contradiction. Thus (xn) has in�nitely many distinct
elements, and it follows by elementary real analysis that these distinct elements have at
least one limit point. 2

We will now show that in certain cases of interest here, the two notions of attractor
set introduced above coincide:

Theorem 2.8. Let � be real and assume an integer base b � 2. If the sequence x =
(fbn�g) has a �nite attractor W , then W is a periodic attactor, and the structure of the
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attractor W is necessarily

W = (w0; fbw0g; fb2w0g; : : : ; fbP�1w0g):
Moreover each wi 2 W is rational.

Proof: LetW = fw0; w1; : : : ; wP�1g be the �nite attractor for x. Let d = min0�i;j<P (jjwi�
wjjj), and choose � < d=(4b). Let W� be the set of all z in [0; 1) such that jjz � wijj < �
for some 0 � i < P . Then we know that there is some K 0(�) such that for all k > K 0 we
have xk 2 W�. Let K be the �rst k > K 0, such that jjxk � w0jj < �. We then have:

jjxK+1 � bw0jj = jjbxK � bw0jj = bjjxK � w0jj < b� < d=4

where the second equality follows from the dilated-norm rule enunciated at the start of
the present section.

It follows that xK+1 is within b� of fbw0g, and similarly xK+k+1 is within b� of fbw0g
whenever xK+k is within � of w0, which must occur in�nitely often. Since there can be
at most one element of the attractor set W in the region of size d=4 about fbw0g, and
since the choice of � above was arbitrary, we conclude that bw0 must be the element of
W in that region. We can for notational convenience assume that w1 = fbw0g. Then
jjxK+1 � w1jj < �, and the argument can be repeated to show that xK+2 is close to
w2 = fb2w0g, etc., and �nally that xK+P�1 is close to wP�1 = fbP�1w0g. It then follows
that the member of W which xK+P is close to must be w0, since otherwise the � region
around w0 would never be visited again by the x sequence and thus w0 could not be
a member of the attractor set. Therefore W = (w0; fbw0g; : : : ; fbP�1w0g), and W is a
periodic attractor for the x sequence. Rationality of the attractor points is demonstrated
by noting the periodicity condition w0 = fbPw0g, which implies that for some integer m
we have w0 = m=(bP � 1), and similarly for the other wi 2 W . 2

Theorem 2.9. If the sequence (xn) as de�ned for Hypothesis A has a �nite attractor W ,
then W is a periodic attractor, and each element of W is rational.

Proof: Here the sequence x is given by x0 = 0, and xn = bxn�1 + rn, with rn ! 0
(since deg p < deg q). Let W = fw0; w1; : : : ; wP�1g be the �nite attractor for x. Let
d = min0�i;j<P (jjwi�wjjj), and choose � < d=(4b+ 4). Let W� be the set of all z in [0; 1)
such that jjz�wijj < � for some 0 � i < P . Then we know that there is some K 0(�) such
that for all k > K 0 we have xk 2 W� and jrkj < �. Let K be the �rst k > K 0, such that
jjxk � w0jj < �. We then have (again we use the dilated-norm rule from the start of the
present section):

jjxK+1 � bw0jj = jjbxK + rK+1 � bw0jj � bjjxK � w0jj+ � < (b+ 1)� < d=4

The remainder of the proof of this result follows the second paragraph of the proof of
Theorem 2.8. 2

Now we are prepared to establish one �nal, important result for this stage of the
analysis:

Theorem 2.10. The sequence (fbn�g) has a �nite attractor if and only if � is rational.
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Proof: Assume that the sequence (fbn�g) has a �nite attractor. By Theorem 2.8 it then
has a periodic attractor. In De�nition 2.6 let K be the index corresponding to � = 1=(4b),
and set h = jxK � w0j. Suppose h > 0. Then let m = blogb(�=h)c, and note that
bmh < � < bm+1h < b� < 1=4. Thus we can write (once again using the dilated-norm
rule):

jjxK+m+1 � wm+1 mod P jj = jjbm+1xK � bm+1w0jj = bm+1jjxK � w0jj = bm+1h > �

But this contradicts De�nition 2.6. Thus we conclude that h = 0, so that xK+k = wk mod P

for all k � 0. In other words, after at most K initial digits, the base-b expansion of �
repeats with period P , so that � is rational. As for the converse, � = p=q rational implies
the sequence (bnp=q) = (((pbn) mod q)=q) is periodic, having in fact the period 1 for � = 0
and, for p=q in lowest terms, the period of the powers of b modulo q. 2

3. The dynamical picture

Before giving a proof for Theorem 1.1, we �rst prove the following result:

Theorem 3.1. Given p; q 2 Z[X], with q having no positive initeger zeros and 0 �
deg p < deg q, and given the integer b � 2, de�ne a real number � via a generalized
polylogarithm series:

� =
1X
k=1

1

bk
p(k)

q(k)
:

Then � is rational if and only if the sequence (xn), where

xn =

 
bxn�1 +

p(n)

q(n)

!
mod 1

has a �nite (alt: periodic) attractor.

Proof: From Theorem 2.10 we know that the sequence (fbn�g) has a periodic attractor
if and only if � is rational. Following the BBP strategy, we can write

fbn�g =

0
@ nX
k=1

bn�kp(k)
q(k)

+
1X

k=n+1

bn�kp(k)
q(k)

1
A mod 1

= (xn + tn) mod 1

where x is de�ned by x0 = 0 and the recursion

xn = bxn�1 +
p(n)

q(n)
;

with the \tail" sequence t given by

tn =
1X
k=1

1

bk
p(k + n)

q(k + n)
:
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Provided that deg p < deg q as in Hypothesis A, given any � there is some n such that
jp(k+n)=q(k+n)j < � for all k � 1. For such n, we have jtnj < �

P
k�1 b�k = �=(b�1) � �.

Thus tn converges to zero as n!1. Hence it follows from Theorem 2.6 that (xn) has a
periodic attractor if and only if � is rational. 2

Note that Theorem 3.1 does not depend on Hypothesis A; we merely use the stated
conditions of Hypothesis A in the exposition. We can now prove Theorem 1.1:

Proof of Theorem 1.1: The constants �; log 2 and �(3) are known to be irrational.
An in�nite series formula of the form required in Theorem 3.1 exists for each of these
constants (see equations (6), (7), (8) and (9) of Section 5). The conclusions of Theorem
1.1 (assuming Hypothesis A) follow immediately from these facts. 2

Further, as we will see in the next section, the conclusions of Theorem 1.1 apply to
quite a few other generalized polylogarithmic constants.

Let us lay out some preliminary observations on the kinds of chaotic dynamical maps
under discussion. Recall the sequence x = (xn) for log 2, which is x0 = 0, and

xn = 2xn�1 +
1

n

(see equation (2) of Section 1 and equation (6) of Section 5). The �rst few iterates are

�
0; 0;

1

2
;
1

3
;
11

12
;
1

30
;
7

30
;
64

105
;
289

840
; : : :

�
:

We remark that these numbers are precisely the (rational) coeÆcients in the Taylor ex-
pansion of

g(t) =
� log(1� t)

1 � 2t
;

reduced modulo 1. However this observation evidently brings nothing new. Similarly, we
note that the dynamical log 2 iteration can be modeled in terms of a \matrix-factorial"
system. In fact, if we decompose xn = fn=gn then the iteration takes the form:

n!

"
fn
gn

#
=

�
2n 1
0 n

�
!
�
0
1

�

where the matrix-factorial is simply the left-right product of matrices with internal param-
eter n running down to 1, as with integer factorials. Though a theory of matrix-factorials
might bring some insight, such algebra may merely be a symbolic reformulation.

Suppose one computes the binary sequence yn = b2xnc, where (xn) is the sequence
associated with log 2 (see above). Assuming Hypothesis A, Theorem 1.1 tells us, in e�ect,
that (yn) eventually agrees quite well with the true sequence of binary digits of log 2|so
much so that properties such as density and equidistribution, if possessed by one sequence,
are possessed by the other. In computations that we have done, we have found that the
sequence (yn) disagrees with 15 of the �rst 200 binary digits of log 2, but in only one
position over the range 5000 to 8000.
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In regard to the constant �, the associated sequence is x0 = 0, and

xn =

 
16xn�1 +

120n2 � 89n + 16

512n4 � 1024n3 + 712n2 � 206n + 21

!
mod 1

(see equation (3) of Section 1 and equation (7) of Section 5). As with log 2, one can
compute the hexadecimal digit sequence yn = b16xnc. When this is done, a remarkable
phenomenon is observed: the sequence (yn) appears to perfectly (not just approximately)
produce the hexadecimal digits of �. We have computed over 100,000 hexadecimal digits
using this recursion, and have found no discrepancies with the true hexadecimal digits of
�.

Conjecture 3.1. The sequence (b16xnc), where (xn) is the sequence of iterates in the
above dynamical map for �, yields the correct hexadecimal expansion. 2

The conjecture says, in a word: the ignored tail terms never change a digit. Evidently
this phenomenon arises from the fact that in the sequence here associated with �, the
perturbation term rn is summable, whereas the corresponding expression for log 2, namely
rn = 1=n, is not summable. In particular, note that the tail sequence tn for � is

tn =
1X

k=n+1

120k2 � 89k + 16

16j�n(512k4 � 1024k3 + 712k2 � 206k + 21)

� 120(n + 1)2 � 89(n + 1) + 16

16(512(n + 1)4 � 1024(n + 1)3 + 712(n + 1)2 � 206(n + 1) + 21)

so that
1X
n=1

tn � 0:01579 : : : :

This �gure (multiplied by 16) can be thought of as an \expected value" of the total
number of base-16 digit errors likely to be observed in the recursive sequence for �. The
small value indicates it is unlikely that any carries or other errors will be observed. The
comparable �gure for log 2 is in�nite, indicating that discrepancies can be expected to
appear inde�nitely.

4. Remarks on Hypothesis A

Now we turn to the question: \what motivates Hypothesis A in its particular form?"
One may wonder to what extent the conditions of the hypothesis, and perforce Theorem
1.1, can be relaxed. For example, Hypothesis A allows only rational iterates (xn). Consider
again the dynamical sequence associated with log 2, namely the sequence given by x0 = 0,
perturbation rn = 1=n, and recursion

xn = 2xn�1 +
1

n

(see equation (1) of Section 1 and equation (6) of Section 5). Now other rational choices
of x0 may well result in an equidistributed sequence (xn). However, if one starts with x0
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set equal to the irrational number 1� log 2 = 0:3068 : : :, then the sequence (xn) converges
to the single limit point zero, so that the full sequence (xn) is in this case not even
dense, much less equidistributed. This fact underscores the essentially chaotic nature of
recursions of this form|an extreme sensitivity to initial conditions is de�nitely present.

Along such lines, suppose that the class of perturbation terms rn in Hypothesis A were
enlarged to include expressions such as rn = n=2n

2�n, which is not, of course, a rational-
polynomial function. It turns out that in this case the associated constant, namely

� =
1X
n=1

n

2n2

is digit-dense to base 2 and hence irrational, yet not normal to base 2. This and some more
general constants of the form

P
P (n)=2Q(n) with P;Q polynomial and 0 < deg P < degQ,

are discussed in our separate paper [3].
One might guess that it is the very fact of rapid decay in rn = n=2n

2�n that causes a
non-equidistributed sequence of dynamical iterates. But this line of thought is imperfect.
Rapid decay can be expected (it is diÆcult to be rigorous here) to allow, in many cases,
equidistribution of the iterates. One attractive example is

xn = 4xn�1 +
1

(2n)!

�
4n+ 1

4n+ 2

�
;

whose equidistribution (mod 1) would imply the base-4 normality of the transcendental
1=
p
e; while an algebraic constant arises from the dynamical iteration

xn = 4xn�1 +
(2n� 3)!!

n!
;

whose equidistribution (mod 1) would establish base-4 normality of the constant 1�1=
p
2

and hence that of
p
2 itself. Given such examples of rapidly decaying perturbations, it

is perhaps amusing that, evidently, one still cannot attempt to associate very rapidly
decaying perturbation functions with normal numbers. Some of the (perhaps likely to be)
abnormal numbers described in [17], such as the Pomerance number

P =
1X
n=1

1

n!n!

can of course be generated on the basis of extremely rapidly decaying perturbation func-
tions.

Again on the subject of the decay rate of perturbation, consider that the binary
Champernowne

C2 = 0:11011100101110111 : : :2

which is known to enjoy base-2 normality, can be written in the intriguing form:

C2 =
1X
n=1

1

2n
rn =

1X
n=1

1

2n
n

2f(n)

12



where the indicated exponent is:

f(n) =
nX

k=1

blog2 kc:

Thus the decay rate of the perturbation rn is slightly faster than exponential, showing
that at least this (admittedly arti�cial) constant C2 has the normality property together
with a decay more rapid than polynomial.

So the particular nature of the growth function of the dynamical perturbation function
rn seems to be somewhat irrelevant|at best it is an elusive connection. Still, if we could
establish some results in regard to the character of dynamical sequences for certain per-
turbation functions outside the class of Hypothesis A, a beautiful vista could emerge. As
just one example of an interesting departure from Hypothesis A, said departure involving
a slowly decaying perturbation function, consider the following expansion for the Euler
constant [4]:

 � 1

2
=

1X
k=1

1

2k+1

0
@�1 + k�1X

j=0

�
2k�j + j

j

��11A :

Here the relevant perturbation function is rk = (1=2)(�1+P)k and exhibits a slow decay
(evidently: rn � 1=

p
n). Needless to say, any results on the distribution of the corre-

sponding dynamical iterates would have application to the study of the still-mysterious
.

5. Generalized polylogarithm forms

We now discuss a large number of speci�c examples of interesting constants appearing
in the class of numbers satisfying Hypothesis A.

The BBP algorithm for resolving isolated digits of a constant works for constants
de�ned by what could be called generalized polylogarithm forms. It turns out that the
forms of interest can all be described as superpositions of the classical Lerch-Hurwitz zeta
function, which itself is de�ned as:

L(s; z; Æ) =
1X
n=0

zn

(n+ Æ)s
;

A special instance is the standard polylogarithm Lis de�ned:

Lis(z) =
1X
n=1

zn

ns
= zL(s; z; 1);

for which a considerable literature has sprung over the years, notably in regard to integer
indices s. To unify our approach to generalized polylogarithms, we next cite three di�erent
expansion forms, each of which form having appeared in the literature. The \rational-
polynomial" or R-form is the generalized polylogarithm value

R(b; p=q) =
1X

m=0

p(m)

q(m)

1

bm

13



for polynomials p; q. The notation R0(b; p=q) will be used to denote this expression with
the summation starting at m = 1. (Note that R0 is the entity that �gures naturally into
Theorem 3.1 and accordingly into the proof of Theorem 1.1.) Then there is what we shall
call a \periodic form" or P -form:

P (s; b; d;A) =
1X
n=0

1

bn

dX
c=1

Ac

(dn + c)s
;

where A = (Ac) is a �nite sequence of d elements. A third form is what we shall call the
\Broadhurst form" or B-form [7]:

B(s; b; �; �a) =
1X
n=1

1

bb(n+1)�c
an
ns
;

where �a = (an) is an in�nite periodic sequence and � is positive real.
It is evident that these functions have at least some relations; for example when s is

an integer we have:

Lis

�
1

b

�
= R0(b; 1=ns) =

1

b
R(b; 1=(n + 1)s)

=
1

b
P (s; b; 1; (1)) = bB(s; b; 1; (1));

where here and elsewhere (a1; a2; : : : ; aP ) denotes a periodic sequence with indicated pat-
tern. However, it is an important observation with respect to our dynamical model that
the R;P;B forms are well-connected even for very general parameters, in the following
manner:

� We have in general R(b; p(n)=q(n)) = bR0(b; p(n� 1)=q(n � 1)).

� A P form can often be converted to an R form. In particular, when s is a positive
integer and the A sequence is nonvanishing, one can combine fractions in the P
de�nition to produce a suitable rational-polynomial multiplier p=q in theR de�nition
and this procedure gives rise to an admissible perturbation rn = p(n)=q(n) for
Hypothesis A.

� Conversely, for p; q 2 Z[X] one can often split easily into partial fractions, to arrive
at a P form. Thus in many circumstances of interest P;Q are interchangeable forms.

� When � = e=f is rational the Broadhurst B form can be cast as a P form, via the
basic relation:

B(s; b; �;�a) =
1X
n=0

1

bne

nX
g=1

anf+g
(nf + g)sbb(g+1)e=fc

:

14



� The connection back to the Lerch-Hurwitz function is best seen via the P form, in
fact:

P (s; b; d;A) = d�s
dX

c=1

AcL
�
s;
1

b
;
c

d

�
;

and this relation embodies the superposition e�ect to which we have alluded.

The P -form is relevant to Hypothesis A, while the R-form and the B-form are useful
in �nding interesting constants which have alternative P -form representations.

Let us now establish a compendium of generalized polylogarithm values, with a view to
application of Hypotheses A. We have, as mentioned in Section 1, the classical expansion
of log 2 = Li1(1=2):

log 2 =
1X
n=1

1

n2n

= R0(2; 1=n) (6)

With some simple algebraic manipulations, similar base 2 series, suitable for this analysis,
can be given for log 3; log 5; log 7; log 11; log 31 and other logarithms [2]. Less trivial
but well-known higher-order polylogarithm evaluations include:

�2 � 6 log2 2 = 12R0(2; 1=n2);

�2�2 log 2 + 4 log3 2 + 21�(3) = 24R0(2; 1=n3):

One of the historical driving relations for the original BBP algorithm development was
the following [2], for which we have intentionally written out some conversion steps to
exemplify once again the interconnection of forms:

� = 8B(1; 2;
1

2
; (1; 0; 0;�1;�1;�1; 0; 0))

= 8
1X
n=1

1

n

1

2b(n+1)=2c
(1; 0; 0;�1;�1;�1; 0; 0))

=
1X
n=0

1

16n

�
4

8n + 1
� 2

8n + 4
� 1

8n+ 5
� 1

8n+ 6

�

= P (1; 16; 8; (4; 0; 0;�2;�1;�1; 0; 0))
= R(16; p=q); (7)

with the rational polynomial here de�ned as

p(n)

q(n)
=

47 + 151n + 120n2

15 + 194n + 712n2 + 1024n3 + 512n4
:

The sequence for � given as equation (3) in Section 1 is obtained via the above translation
rule for converting R! R0.
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This simple, base-16 prescription for � is not unique|one also has the following, which
was �rst discovered by Ferguson and Hales [2] and independently by Adamchik and Wagon
[1]:

� = 4B(1; 2;
1

2
; (1; 1; 1; 0;�1;�1;�1; 0)

This formula may be written in the P -form notation as

� =
1

4
P (1; 16; 8; (8; 8; 4; 0;�2;�2;�1; 0)):

Actually, various expansions for � arise from the formal identity, valid for t 2 (0; �) [12]:

�

2
� t =

1X
n=1

cosn t
sin(nt)

n
:

One may use rational multiples of � such as t = �=3 to achieve such as:

� = 2
p
27 B(1; 2; 1; (1; 1; 0;�1;�1; 0))

=
p
27R(64; p=q);

where now the rational polynomial is:

p(n)

q(n)
=

193 + 1188n + 2097n2 + 1134n3

320 + 3744n + 14112n2 + 20736n3 + 10368n4
:

This t = �=3 value thus yields a BBP scheme for extraction of individual base-64 digits;
and perforce, includes �

p
3 in the galaxy of normal numbers under Hypothesis A. The

use of t = �=4 gives a previous expansion of this section. The choice t = �=5 gives a
peculiar expansion. Using the exact relation cos(�=5) = �=2 with � = (1 +

p
5)=2 being

the golden mean of antiquity, we �nd:

� =
55=4

3
p
�

1X
n=1

1

n

�
�

2

�n
(1; �; �; 1; 0;�1;��;��;�1; 0):

Fascinating as this relation may be, it falls into the category of an irrational-base expansion
(i.e., the BBP base would be 2=� = 1:23606 : : :), and applications if any are unclear.
Similarly, choosing t = �=6 results in a base-(4=3) expansion, which likewise is evidently
of dubious bene�t.

The more peculiar base expansions point to the open question of whether a BBP
implementation for � can be performed in the culturally important base 10. The best we
can seem to do in this regard was developed during the present work, and runs as follows.
Choosing parameter t = cos�1(1=

p
20) one can derive:

�

2
= sin�1

�
9

10

�
+
p
19

1X
n=1

Dn�1
1

n10n
;
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with initial coeÆcients D0 = D1 = 1, and the rest determined via the recurrence Dn+1 =
Dn � 5Dn�1. It is possible that a variant of the original BBP algorithm can be fashioned
on the idea that the Dn comprise a Lucas sequence, and as is known, evaluations of
sequence elements mod n can be e�ected via exponential-ladder methods. Incidentally,
there are other expansions that do involve the decimal base in a simpler fashion. One is

log
�
9

10

�
= �

1X
n=1

1

n10n
;

which admits straightforward computation of isolated decimal digits [2]. Thus on Hy-
pothesis A, log(9=10) is normal to base 10, since it is known to be irrational. More exotic
base-10 relations include:

log
�
1111111111

387420489

�
= 10�8

X
n=0

1

1010n

 
108

10n + 1
+

107

10n + 2
+ : : :+

1

10n + 9

!

which we found, as explained later, during the course of the present research.
In regard to � expansions, it is also known that

�2 = 32B(2; 2;
1

2
; (1;�1;�1;�2;�1;�1; 1; 0))

and

�2 =
9

8
P (2; 16; 6; (16;�24;�8;�6; 1; 0));

and thus one may address �2 itself within the theory. We should add that a base 3 series
is known for �2, due to Broadhurst [6]:

�2 =
2

27
P (2; 729; 12; (243;�405;�81;�27;�72;�9;�9;�5; 1))

Similar high-order generalizations can be developed for log2 2 and for the Catalan
constant G as in:

G� �

8
log 2 = B(2; 2;

1

2
; (1; 1; 1; 0;�1;�1;�1; 0))

Broadhurst [7] also developed forms for �(3) and �(5), for example

�(3) =
48

7
B(3; 2;

1

2
; (1;�7;�1; 10;�1;�7; 1; 0))

+
32

7
B(3; 2;

3

2
; (1; 1;�1;�2;�1; 1; 1; 0)):

However, recall the convenient result that any superposition of B functions (with appro-
priate, rational \�" parameters and integer power arguments s) can be cast as a single R
function. With this in mind we achieve, after suitable symbolic manipulation, a base-4096
expansion:

�(3) = R(4096; p=q) (8)
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where the speci�c rational function is de�ned by the rather formidable expression

7

8

p(m)

q(m)
=

3

(1 + 24m)3
� 21

(2 + 24m)3
+

12

(3 + 24m)3
+

15

(4 + 24m)3

� 3

4(5 + 24m)3
+

3

2(6 + 24m)3
+

3

8(7 + 24m)3
� 3

2(9 + 24m)3

� 21

16(10 + 24m)3
� 3

32(11 + 24m)3
� 3

4(12 + 24m)3
� 3

64(13 + 24m)3

� 21

64(14 + 24m)3
� 3

16(15 + 24m)3
+

3

256(17 + 24m)3

+
3

128(18 + 24m)3
� 3

512(19 + 24m)3
+

15

256(20 + 24m)3

+
3

128(21 + 24m)3
� 21

1024(22 + 24m)3
+

3

2048(23 + 24m)3

For �(5) one ends up working with a yet larger base|in fact, base-(260):

�(5) =
18432

62651
B(5; 2;

1

2
; (31;�1614;�31;�6212;�31;�1614; 31; 74552))

+
14336

62651
B(5; 2;

3

2
; (173; 284;�173;�457;�173; 284; 173;�111))

1511424

62651
B(5; 2;

5

2
; (1; 0;�1;�1;�1; 0; 1; 1))

= R(260; p=q); (9)

for certain rational perturbation p; q, where deg p = 590 and deg q = 595. Nevertheless
these machinations reveal that �(3) and �(5) can be written in terms of R-function values
appropriate to Hypothesis A.

No eventually periodic sequence can be uniformly distributed (mod 1), so this case
must be treated separately in Hypothesis A. So one might ask under what conditions, if
any, on p(n); q(n), and b � 2 is

P
p(n)=q(n)b�n rational? We now describe two di�erent

classes of generalized series that turn out to be rational.
The �rst case can be called the \telescoping" phenomenon. For example, any sum of

the form

1X
n=1

1

bn

 
bm

n
� 1

n+m

!
;

wherem is a �xed positive integer, has a rational value due to elementary telescoping. For
such sums, the corresponding dynamical iterations of Hypothesis A, with perturbation
function p(n)=q(n) = (bm(n + m) � n)=(n(n + m)), result in a periodic attractor. One
could fashion a theory in which telescoping amounted to the formal relation

0 =
I
C
b�z

p(z)

q(z)
dz;
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where C is a contour starting at +1+ i, circling the origin counterclockwise, and ending
at +1� i. Unfortunately, this kind of formalism is only e�ective for telescoping per se.
There is a di�erent kind phenomenon that yields rational R forms.

This second, and more profound class of exceptions we call the \Ferguson anomalies,"
involving a fascinating and evidently rare phenomenon. These anomalies are also known
as \Zagier zeros," which involve polylogarithmic ladders [8]. We only know of a few
genuinely di�erent examples (note that mere translation of indices can turn one example,
say a zero sum, into a rational sum giving nothing new). Here are three, where we write
out the explicit partial fraction decomposition for the �rst example only:

0 = P (1; 16; 8; (�8; 8; 4; 0; 8; 2;�1; 0))
=

1X
n=0

1

16n

� �8
8n + 1

+
8

8n + 2
+

4

8n + 3
+

8

8n + 5
+

2

8n + 6
� 1

8n + 7

�
;

0 = P (1; 64; 6; (16;�24;�8;�6; 1; 0))
0 = P (1; 4096; 24; (0; 0; 0; 0;�256; 256; 128; 0; 128;�128;�64;�64; 0;�16;

0; 24; 4;�4;�2;�2;�2;�3; 1; 0))
David Broadhurst has enumerated several other anomalies of this type, some involving
base 3 [8].

The iterates for the above anomalies, with their rational polynomials as exhibited, are
rapidly attracted to the single limit point zero. If one trivially translates such anomalous
sums (for example by leaving o� the leading term of the �rst case above, which results in
the sum 97=105) then the dynamical iterates will become pseudoperiodic in the long run
(in this example, the attractor set has 12 points, since 2 has order 12 modulo 105). In
summary, under Hypothesis A, our generalized polylogarithmic constants tend to be either
normal or rational, the latter instance covering the telescoping and Ferguson anomalies.

During the course of this work, and due mainly to theoretical attempts to resolve the
Ferguson anomalies, we developed a procedure for analyzing certain generalized polylog-
arithms. Some of our results echo formulae found in the original BBP-algorithm work
[2] but tend to lead one into di�erent research directions, for example into symbolic as
opposed to numerical processing. To convey an idea of the kind of new relation we have
in mind, we give some examples:

tan�1
�
1

2

�
=

1

8

1X
n=0

1

16n

�
4

4n+ 1
� 1

4n+ 3

�
;

which is not especially profound|it is the way this was derived that may be of interest.
Then we have

log 2 =
2

27

1X
n=0

1

81n

�
9

4n + 1
+

1

4n + 3

�
;

which conveniently enough will establish, on Hypothesis A, that log 2 is normal to base
3. Alternatively, such a base-3 result can be gleaned from the simple formula

log 2 = 6
1X
n=1

1

9n(2n� 1)
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These relatively simple new examples all arose in our work not from PSLQ numerical
experiments, but from a certain form for a speci�c polylogarithmic construction. First
one obtains a closed form, involving base b and any positive integers d; c, for a typical
component of the P form:

1X
n=0

1

bn
1

dn+ c
= �1

d
bc=d

d�1X
a=0

e�2�iac=d log
�
1� 1

b1=d
e2�ia=d

�
;

which we call closed because the a sum is �nite. But it is not the derivation (as foreshad-
owed in [12]) of this result that presents diÆculty. It is what we do with this closed form
that is the challenging epistemological issue. One success achieved by symbolic processing
is the following:

1X
n=0

1

b3n

 
b

3n+ 1
+

1

3n+ 2

!
=

1

3
b2 log

 
b2 + b+ 1

b2 � 2b+ 1

!
;

which di�ers frommost other formulae thus far, in that arbitrary bases b are here involved.
Under Hypothesis A, every style of logarithm on the right for base b � 2 is normal to base
b. Our procedure for moving from the �nite, logarithmic sum to such results involved
symbolic processing in the following way. Since the a sum above is patently real, one may
split everything into real, imaginary parts and discard the latter. Then one may exploit
exact trigonometric evaluations to arrive at new relations. Some selected examples of
what this symbolic procedure can uncover are the following. For the peculiar base b = 55

we have:

P (1; 55; 5; (0; 5; 1; 0; 0)) =
1X
n=0

1

55n

�
5

5n+ 2
+

1

5n+ 3

�

=
25

2
log

0
B@781
256

 
57 � 5

p
5

57 + 5
p
5

!p5
1
CA :

This result dampens the hope that a purely experimental mathematics approach (e.g.
PSLQ-based numerics [13]) will resolve any polylogarithm form; indeed, to discover the
above example one would need to have in one's basis of possible terms not only quadratic
surds as coeÆcients but also logarithms of such surds. By certain manipulations on the
c-index of the logarithmic a-sum one can establish other relations such as the following,
valid for integer m � 2:

P (1;mm;m; (mm�2;mm�3; : : : ;m; 1; 0)) =
1X
n=0

1

mmn

m�1X
c=1

mm�1�c

nm+ c

= mm�2 log

 
mm � 1

(m� 1)m

!
:

It is this latter formula whose special case m = 10 yields our aforementioned expansion
for log((1010 � 1)=910). By adjusting the weights of the partial fraction components, one
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may also arrive at some obscure tan�1 evaluations. We have given one of the simpler
cases (for tan�1(1=2)), yet one can also derive:

P (1; 33; 3; (3;�1; 0)) =
1X
n=0

1

27n

�
3

3n+ 1
� 1

3n+ 2

�
= 6

p
3 tan�1

 p
3

7

!
;

as well as tan�1 forms such as a curious construct that involves quartic irrationals:

P (1; 55; 5; (53;�52; 5;�1; 0)) =

2 � 513=4
 

1p
�
tan�1

 
51=4p
�

233 � 329
p
5

5938

!
+
p
� tan�1

 
51=4p
�

939 + 281
p
5

5938

!!
:

Whatever be the implications of such machinations, this construct is, on Hypothesis A,
either rational (unlikely) or normal to base 5.

6. Connection with pseudorandom number generators

Let us revisit once again what has been our canonical constant for present purposes,
namely � = log 2. As in equation (5) of Section 1 we can write

f2n log 2g =

 1X
k=1

2n�k

k

!
mod 1

=

0
@ nX
k=1

 
2n�k mod k

k

!
mod 1 +

1X
k=n+1

2n�k

k

1
A mod 1

= (xn + tn) mod 1

where xn and tn denote the two sums as shown. Recall that our proof of Theorem 3.1 (and
perforce, Theorem 1.1) depends on the fact that tail terms such as tn vanish as n !1.
In this light, the sequence x can be considered to be a pseudorandom number generator
(PRNG), with values in [0; 1):

xn =

 
2n�1 mod 1

1
+
2n�2 mod 2

2
+
2n�3 mod 3

3
+ : : :+

1

n

!
mod 1:

(Note that the �rst term vanishes; we include it only for notational completeness.) One
can think of this as a \cascaded" PRNG, in which an ever-increasing number of distinct
linear congruential PRNGs, namely the terms (2n�m mod m)=m, are summed together
mod 1. We might then attempt to characterize the behavior of the sequence (xn) in terms
of the generator's properties. For example, we can investigate the period of this type of
cascaded generator.

There are diÆculties with this approach, not the least of which is the fact that a the-
ory of cascaded PRNGs is not commonly discussed, and upon preliminary investigation
it is evident that open problems abound. For one thing, there are questions about �xed

sums of PRNGs that are yet open, such as the precise statistics of the sum of just two
standard PRNGs. Furthermore, whereas for �xed, large n the initial terms corresponding
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to (2n�m mod m)=m may well be on their way into stable statistical cycles, the latter
terms ending : : :4=(n� 2) + 2=(n� 1) + 1=n are \just getting started," as it were. So the
cascaded PRNG does, in some sense, continue to \seed itself" as n increments. These dif-
�culties may be insurmountable. Nevertheless, some partial results pertaining to random
generators are obtained in the separate treatise, where the authors investigate a statistical
picture as a kind of complement to the present, dynamical one [3].

7. Conclusions and open problems

We have outlined above what we believe to be some new approaches to the age-old
question of the statistical randomness of the digits in the expansions of several well-known
mathematical constants. We acknowledge that our analysis may have raised more ques-
tions than it has answered, and we do not expect that the open hypotheses and conjectures
will be quickly or easily resolved. We only hope that these results will stimulate further
research in the �eld and lead to a greater understanding of the issues. Here is a sampling
of the open problems in this arena:

� Is there a natural, or even believable, generalization of the perturbation function rn
in Hypothesis A?We have seen (end of Section 3) that the particular decay rate of rn
does not have an obvious connection with the normality properties of the associated
constants. This subject is taken up further in the authors' separate paper [3].

� Is there a way to connect the dynamical picture, as embodied in Hypothesis A and
our various observations thereupon, with the celebrated Weyl theorem (namely, that
(xn) is equidistributed if and only if

lim
N!1

1

N

N�1X
n=0

e2�ihxn = 0

for every integer h 6= 0)? The stultifying fact that the xn contain powers bn for base
b prevents any easy manipulation of the exponential sum.

� How does one bring to bear all of the historical achievements from ergodic theory
and the theory of chaotic-dynamical maps? We have barely touched upon a few
isolated connections. Everything from Lyapunov exponents to fractal dimension
has, let us say a priori, a possible role. Along this line, J. Lagarias has recently
demonstrated intriguing connections between our theory, ergodic theory, the theory
of G-functions and a conjecture by Furstenberg [16].

� Can one develop a satisfactory theory of \Ferguson anomalies," namely those in-
stances in which a generalized polylogarithm series has a rational sum, and yet
elementary telescoping does not occur?

� Can we obtain formal bounds on the lengths of periods produced by cascaded
PRNGs, even for the special case of log 2? Can we obtain further results on the
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statistics of PRNG sequences, such as limits on the deviations of frequencies of
digit strings from their expected values? Again this is touched upon separately in
a companion paper [3].

� Is there a cryptographic signi�cance to the present notion of digit randomness? Two
salient things are well known in cryptographic circles: �rst, that chaos generators
are highly (and rightfully) suspect as random generators; and second, that linear-
congruential generators have been \broken" (in fact, many polynomial-recursive
generators have been broken as well). Still, do we not believe that the hexadeci-
mal digits of � should be cryptographically secure (given an unknowable starting
position, say), and if yes, then does not Conjecture 3.1 imply that a fairly simple
dynamical map should produce secure digits? We do admit that in this regard one
must recognize precision issues; i.e., to go very far out in a � expansion, nonlinear|
albeit eÆcient in the sense of the BBP algorithm|work must be expended. Still,
one might contemplate the notion of taking the rational dynamical iterates xk and
reducing both numerator and denominator modulo p for large prime p, in this way
maintaining linear control over precision for all iterates. Then again, one could
\seed" such a cryptographic generator with an adroitly obscure choice of rational
perturbation rk, and so on.

8. Acknowledgments

The authors are grateful to J. Borwein, P. Borwein, K. Briggs, D. Broadhurst, J.
Buhler, D. Copeland, M. Jacobsen, J. Lagarias, R. Mayer, S. Plou�e, A. Pollington, C.
Pomerance, J. Shallit, M. Trott, S. Wagon, T. Wieting and S. Wolfram for theoretical and
computational expertise throughout this project. We would like to express our delight at
discovering just how far one may push a state-of-the-art symbolic processor of today to aid
in algebraic development; we were enormously impressed with the powers of Mathematica

for that purpose, and hereby thank all of the mathematicians and engineers who have made
that comprehensive package available. We also wish to acknowledge H. Ferguson for his
amazing \PSLQ" integer relation algorithm, which was used heavily in our investigations.
We thank a reviewer for incisive remarks of such quality that the very design of this and
subsequent papers was positively a�ected.

23



References

[1] Victor Adamchik and Stan Wagon, \A Simple Formula for Pi," American Mathe-

matical Monthly, Nov. 1997, pg. 852-855.

[2] David H. Bailey, Peter B. Borwein and Simon Plou�e, \On The Rapid Computation
of Various Polylogarithmic Constants," Mathematics of Computation, vol. 66, no.
218, 1997, pp. 903{913.

[3] David H. Bailey and Richard E. Crandall, \Random Generators and Normal Num-
bers," manuscript, 2000.

[4] Beeler, M. et al. Item 120 in Beeler, M.; Gosper, R. W.; and Schroeppel, R., \HAK-
MEM," Cambridge, MA: MIT Arti�cial Intelligence Laboratory, Memo AIM-239, p.
55, Feb. 1972.

[5] Jonathan M. Borwein, David M. Bradley and Richard E. Crandall, \Computational
Strategies for the Riemann Zeta Function," manuscript, Dec. 1998, available from
http://www.cecm.sfu.ca/preprints/1998pp.html.

[6] David J. Broadhurst, \Massive 3-loop Feynman Diagrams Reducible to SC� Primi-
tives of Algebras of the Sixth Root of Unity," preprint, March 1998, available from
http://xxx.lanl.gov/format/hep-ph/9803091.

[7] David J. Broadhurst, \Polylogarithmic Ladders, Hypergeometric Series and the
Ten Millionth Digits of �(3) and �(5)," preprint, March 1998, available from
http://xxx.lanl.gov/format/math/9803067.

[8] David J. Broadhurst, \Conjecture on Integer-Base Polylogarithmic Zeros Motivated
by the Cunningham Project", manuscript, March 2000.

[9] J. W. S. Cassels, \On a Problem of Steinhaus about Normal Numbers," Colloquium
Mathematicum, vol. 7 (1959), pg. 95{101.

[10] D. G. Champernowne, \The Construction of Decimals Normal in the Scale of Ten,"
Journal of the London Mathematical Society, vol. 8 (1933), pg. 254{260.

[11] A. H. Copeland and P. Erd}os, \Note on Normal Numbers," Bulletin AmericanMath-

ematical Society, vol. 52 (1946), pg. 857{860.

[12] Richard E. Crandall, Topics in Advanced Scienti�c Computation, Springer-Verlag,
1996.

[13] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, \Analysis of PSLQ,
An Integer Relation Finding Algorithm," Mathematics of Computation, vol. 68, no.
225 (Jan. 1999), pg. 351-369.

24



[14] Donald E. Knuth, The Art of Computer Programming, vol. 2, third edition, Addison-
Wesley, Menlo Park, 1998.

[15] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-
Interscience, New York, 1974.

[16] Je�rey C. Lagarias, \On the Normality of Fundamental Constants," manuscript,
AT&T Labs, August 2000.

[17] Greg Martin, \Absolutely Abnormal Numbers," manuscript, 2000, available from
http://arXiv.org/ps/math/0006089.

[18] Ivan Niven, Irrational Numbers, Carus Mathematical Monographs, no. 11, Wiley,
New York (1956).

[19] Colin Percival, \The Quadrillionth Bit of Pi is `0'," manuscript, 2000, available from
http://cecm.sfu.ca/pihex/announce1q.html.

[20] E. Weisstein, mathematics web site, http://www.mathworld.com.

25


